Well-posedness of the Free-surface Incompressible Euler Equations with or without Surface Tension

نویسندگان

  • Daniel Coutand
  • Steve Shkoller
  • S. SHKOLLER
چکیده

We develop a new methodology for treating free boundary problems in mechanics, and use it to prove local-in-time well-posedness in Sobolev spaces for the freesurface incompressible 3D Euler equations with or without surface tension for arbitrary initial data, and without any irrotationality assumption on the fluid. This is a free boundary problem for the motion of an incompressible perfect liquid in vacuum, wherein the motion of the fluid interacts with the motion of the free-surface at highest-order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-Posedness of the Free-Boundary Compressible 3-D Euler Equations with Surface Tension and the Zero Surface Tension Limit

We prove that the 3-D compressible Euler equations with surface tension along the moving free-boundary are well-posed. Specifically, we consider isentropic dynamics and consider an equation of state, modeling a liquid, given by Courant and Friedrichs [8] as p(ρ) = αρ − β for consants γ > 1 and α, β > 0. The analysis is made difficult by two competing nonlinearities associated with the potential...

متن کامل

Local Well-posedness of the Viscous Surface Wave Problem without Surface Tension

We consider a viscous fluid of finite depth below the air, occupying a threedimensional domain bounded below by a fixed solid boundary and above by a free moving boundary. The domain is allowed to have a horizontal cross-section that is either periodic or infinite in extent. The fluid dynamics are governed by the gravity-driven incompressible Navier-Stokes equations, and the effect of surface t...

متن کامل

A Simple Proof of Well-posedness for the Free-surface Incompressible Euler Equations

The purpose of this this paper is to present a new simple proof for the construction of unique solutions to the moving free-boundary incompressible 3-D Euler equations in vacuum. Our method relies on the Lagrangian representation of the fluid, and the anisotropic smoothing operation that we call horizontal convolution-by-layers. The method is general and can be applied to a number of other movi...

متن کامل

The Viscous Surface-Internal Wave Problem: Global Well-Posedness and Decay

We consider the free boundary problem for two layers of immiscible, viscous, incompressible fluid in a uniform gravitational field, lying above a general rigid bottom in a threedimensional horizontally periodic setting. We establish the global well-posedness of the problem both with and without surface tension. We prove that without surface tension the solution decays to the equilibrium state a...

متن کامل

A Priori Estimates for Free Boundary Problem of Incompressible Inviscid Magnetohydrodynamic Flows

In the present paper, we prove the a priori estimates of Sobolev norms for a free boundary problem of the incompressible inviscid MHD equations in all physical spatial dimensions n = 2 and 3 by adopting a geometrical point of view used in [4], and estimating quantities such as the second fundamental form and the velocity of the free surface. We identify the well-posedness condition that the out...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005